
Theor Chim Acta (1991) 79:337-347 Theoretica
ChimicaActa

A parallel version of ARGOS: A distributed memory model
for shared memory UNIX computers*

Robert J. Harrison and Rick A. Kendall**
Theoretical Chemistry Group, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, IL 60439, USA

Received July 20, 1990/Accepted September 6, 1990

Summary. A distributed memory programming model was used in a fully
parallel implementation of the ab initio integral evaluation program ARGOS
(R. Pitzer (1973) J. Chem. Phys. 58:3111), on shared memory UNIX computers.
The method used is applicable to many similar problems, including derivative
integral evaluation. Only a few lines of the existing sequential F O R T R A N source
required modification. Initial timings on several multi-processor computers are
presented. A simplified version of the programming tool used is also presented,
and general consideration is given to the parallel implementation of quantum
chemistry algorithms.

Key words: Parallel a lgor i thms- Shared memory compu te r s - Ab initio al-
gorithms

Introduction

The general application of ab initio chemistry methods is still limited by the vast
amount of computer resources required to perform electronic structure calcula-
tions of any quality on even small molecular systems. For this reason computa-
tional chemists have been tracking developments in computer technology, and
developing algorithms and programming models appropriately. Notable exam-
ples would be the development of matrix based algorithms for vector computers
(e.g. the CRAY-1 [1]), the use of local attached array processors (e.g. the
FPS-164 [2]), the the use of large memory algorithms [3]. More recently there has
been active interest in the exploitation of parallel computers [4-7]. It is noted
that nearly all current super- and mini-super-computers use multiple processors

* Work performed at Argonne National Laboratory under the auspices of the Division of Chemical
Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract W-31-109-Eng-
38. Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle
Memorial Institute under contract DE-AC06-76RLO 1830
** Current address: Mail Stop K2-18, Molecular Science Research Center, Battelle Pacific Northwest
Laboratories, Richland WA 99352

338 R.J. Harrison and R. A. Kendall

to achieve their peak performance. Increased parallelism seems to be the only
path to a new generation of cost-effective, high-performance computers, the
debate really focusing around machine architecture and software development.

Shared memory parallel machines 1 are generally assumed to be easier to use
and program than distributed memory machines 2. This, in part, is because the
environment is familiar, most programs can run unmodified (albeit inefficiently)
and compilers seemingly automate much of the work required to parallelize a
subroutine. In addition, optimized scientific libraries can provide an easy route
to high performance, and there is usually no explicit involvement of the
programmer in inter-process communication. However, in typical quantum
chemistry applications, the task granularity within single subroutines is not
sufficient to permit efficient parallelization, and one must retreat further up the
subroutine calling tree to find the required level of parallelism. Compilers are not
yet capable of doing meaningful analysis at this level of program structure and
the programmer is left having to do significant amounts of re-writing.

Some algorithms do admit a straightforward and efficient implementation on
distributed memory machines. Examples would be many Monte-Carlo models
[4, 8], classical trajectories [4], and ab initio integral evaluation [6, 7]. These
algorithms have in common that the work of each process can be driven by local
data, the reqUired infrequent inter-process communication not being fundamen-
tal to the work performed by each process. Programmers and vendors of shared
memory machines often seem to have ignored this experience.

ARGOS (ARGonne and Ohio State [9]) is a general program to evaluate the
one and two electron integrals required in ab initio electronic structure calcula-
tions, allowing for symmetry adaptation of generally contracted basis sets.
Whilst it may not be the most efficient such program, it is certainly one of the
most general and widely used. An efficient, portable, parallel implementation
would be very useful. We emphasize the need for portability as this program is
used by many groups on a wide variety of multi-processor computers, the most
notable of which would be Cray. Below we describe a simple, efficient paralleliza-
tion of ARGOS for all shared memory UNIX based computers, using a
distributed memory programming model. We present simplified versions of the
tools used; the actual versions used are available from the authors upon request.

Parallel implementation

The structure of integral evaluation programs pre-disposes them to a coarse-
grain, data-driven parallel implementation. Typically, after some setup, a nest of
four loops (over the shells of basis functions, or some equivalent) is entered with
the actual integrals being evaluated within a complex subroutine calling tree.
ARGOS, in common with nearly all such programs, passes arguments to and
between these low level routines through both common blocks and formal
parameters. The low level routines do not have sufficient granularity to paral-
Mize well. Any attempt to seek a higher level of parallelism in a shared memory

ared memory parallel machines have a memory which is directly addressable by all the
~ s s o r s

~tributed memory parallel machines do not have any globally addressable memory, and
~ssors must share data by message passing, explicit or otherwise

A parallel version of ARGOS 339

model would require manual determination of data dependencies created by the
common block usage, and substantial re-coding. Great reliance would also be
put upon the ability of optimizing compilers to generate correct re-entrant code,
which seems to be a problem on some machines. On a distributed memory
machine it suffices to allow different processors to handle successive iterations of
the nest of four loops; all data dependencies being eliminated since no data is
shared. There have been several implementations of two electron integral evalu-
ation programs on distributed memory machines (for example [6, 7]), all using
this scheme, and all remarking on how straightforward it is. Here we develop the
minimum tools necessary to provide a portable distributed memory implementa-
tion on shared memory computers.

There are many 'portable' memory programming environments that are
being or have been developed, supporting hardware platforms from hypercubes
and networks of workstations, to shared memory multi-processors. An incom-
plete list might include PARMACS [I0], Cosmic Environment [11], LINDA [12],
SR [13], and STRAND [14]. Of these only STRAND and LINDA are available
as commercially supported products, and then only on a relatively small number
of platforms (mostly workstations). Since the requirements of tools for computer
science research into parallel computing and for physical science production
computing are quite different (we require robustness, high performance, portabil-
ity, full support for FORTRAN I/O), most of these tools are not yet suitable for
our use. We also have neither the expertise nor the desire to port large amounts
of O/S specific code, so for the simple application under discussion here we shall
develop our own small set of tools with a minimum of functionality. However,
for more complex applications, packages such as STRAND may have a role to
play by providing a level of abstraction from the hardware that is not possible
with vendor provided tools. Using PARMACS [10] we already have model
Hartree-Fock programs which are portable between workstation networks and
shared memory machines. One could anticipate sophisticated configuration
interaction programs portable between hypercubes and Crays, if such programs
were deemed valuable.

All that is needed for a distributed memory implementation of ARGOS (or
any similar application) is some means of: (1) creating a small number of
identical processes, (2) initializing the data for each process, (3) dividing
(deterministically or dynamically) the work between the processes, (4) assemble
the final list of integrals, and (5) killing the superfluous processes. Fortunately
UNIX makes this straightforward, and by using the C UNIX system call
interface we achieve a degree of portability that would not be so easy in
FORTRAN. This functionality is implemented in the tools presented in program
listing (1), whose use is exemplified by the example in listing (2). To handle steps
(1) and (2) we use the UNIX system call fork0, which makes a copy of the
calling process that is identical to its 'parent' except for process identification and
some file and system parameters. To the parent fork0 returns the process
number of the child, while to the child fork0 returns zero. Step (5) may be
implemented by having the parent explicitly wait for its children to finish their
allotted work. Step (3) is achieved by assigning each process a logical process
number (0-nproc-1, nproc being the number of processes). Iterations of subse-
quent loops may be assigned deterministically on the basis of this value, possibly
by the mechanism described in reference [7] and which is also used in program
listing 2. We discuss dynamic load balancing in the next section. Assuming that
each process writes its own distinct file of integrals, the final list of integrals is

340 R.J . Harrison and R. A. Kendall

most easily assembled (step (4)) by simple file concatenation. It would also be
possible for the processes to communicate with another process whose job is just
to write the file, or programs reading the integrals could simply read the multiple
files. The first solution places heavy demand on inter-process communication,
which is not otherwise needed, and the second solution requires modification of
many independent programs.

The forking of processes is at the heart of UNIX and on many virtual
memory machines is very efficient, as new physical copies of pages in the parent's
memory space are not made until they are written to. Real memory machines,
such as Cray, have to do much more explicit copying of memory and so are
slower at starting up processes. However, at the very worst the time to fork a
sizable process is measured in tenths of a second, and is negligible compared to
the work each process is doing here.

A call to the subroutine parallel creates the requested number of essentially
identical processes returning to each its logical process value. A call to serial
causes the parent to wait for its children to die, and causes a child to exit
normally. The net effect is that all code between calls to parallel and serial is
executed by multiple processes with independent data. Care must be taken with
files; the best course is for each process to open and close files with unique
names. The structure of the integral code is illustrated in the test example (listing
2), which merely writes a list of numbers to a file, and then reads and sums them.
Multiple processes write multiple files, which are then concatenated before the
addition. The FORTRAN program first reads in the requested number of
processes. This step corresponds to the data initialization of the integral pro-
gram, which is much more complex and involves extensive use of COMMON
blocks, etc. The program then calls parallel to create the new processes, which
open unique files and execute distinct iterations of the DO loop. Note that nests
of DO loops are readily parallelized by the modulo mechanism used [7]. The call
to serial explicitly ends the parallel section and subsequently the master process
concatenates the files and computes the sum.

Only the two-electron integral evaluation has been parallelized within
ARGOS, as the one-electron integrals take just a few seconds. The only code
modifications required were in the two-electron driver routine: (1) outside the nest
of loops parallel is called and unique integral files are opened, (2) within the body
of the loops work is shared in the same manner as in the example, and (3) just
after the loops, serial is called and the integral files are concatenated into one.
About a dozen lines of the original driver routine were modified or added and new
routines were written to handle the concatenation of the integral and log files.
Including extra statements for timing purposes and comments, only 500 lines of
source were modified or written in total. We note that our versions of parallel and
serial perform much more error checking than those in listing l, and that the
distribution of work has actually been hidden inside a subroutine call (which just
returns the next value of a counter given its previous value, the total number of
processes and a logical process number). This increased modularity cleans up the
code and makes load-balancing schemes straightforward to implement.

Results and discussion

This program has been run on all multi-processor Cray models, an Alliant FX/8
and a four processor Ardent Titan. Table 1 presents timings for water in a 41

A parallel version of ARGOS 341

Table 1. Parallel ARGOS timings for C2~ water with a 41 function segmented basis set. All times
reported are in seconds. The parent wall time is the total wall clock execution time for the job. The
parent cpu time is the total cpu time used by the parent process. The two-electron times report the
minimum, maximum and average cpu times spent evaluating two-electron integrals by the processes.
Values in parentheses are ratios to times for a single process

Machine No. of Parent process Two-electron cpu

Processes cpu wall min. max. ave.

Ardent Titan 1 91.8 (1.0) 94.0 (1.0) 90.1 90.1 90.1
4 27.2 (3.4) 37.0 (2.5) 24.8 25.8 25.5

Alliant FX/8 l 87.6 (1.0) 90.0 (1.0) 85.7 85.7 85.7
4 24.17 0 30.0 (3.0) 21.4 24.2 22.7
8 14.0 0 21.0 (4.3) 10.7 13.0 •2.2

CRAY-XMP l 6.4 (1.0) 6.6 (1.0) 6.26 6.26 6.26
4 1.6 (4.0) 3.1 (2.1) 1.47 1.68 1.57

CRAY-YMP 1 5.36 (1.0) 5.38 (1.0) 5.25 5.25 5.25
4 1.34 (4.0) 2.25 (2.4) 1.24 1.41 1.32
8 0.67 (8.0) 1.58 (3.4) 0.56 0.71 0.66

f u n c t i o n s e g m e n t e d T Z P bas i s set [16], u s i n g C2~ s y m m e t r y . T a b l e 2 c o n t a i n s
t i m i n g s fo r D2h e t h y l e n e in a 62 f u n c t i o n 6 - 3 1 1 G * * bas i s [17]. T a b l e 3 c o n t a i n s
t i m i n g s fo r C a F S i 4 H 9 in a 101 f u n c t i o n g e n e r a l l y c o n t r a c t e d D Z bas i s set [18],
w i t h n o s y m m e t r y . Al l t i m e s a r e in s e c o n d s . C a l c u l a t i o n s o n t h e A l l i a n t a n d

Table 2. Parallel ARGOS timings for D2h ethylene with a 62 function 6-311G** basis. All times
reported are in seconds. The parent wall time is the total wall clock execution time for the job. The
parent cpu time is the total cpu time used by the parent process. The two-electron times report the
minimum, maximum and average cpu times spent evaluating two-electron integrals by the processes.
Values in parentheses are ratios to times for a single process

Machine No. of Parent process Two-electron cpu

Processes cpu wall min. max. ave.

Ardent Titan 1 392.6 (1.0) 396.0 (1.0) 389.3 389.3 389.3
4 108.4 (3.6) 138.0 (2.9) 91.3 111.9 101.6

Alliant FX/8 1 332.4 (1.0) 339.0 (1.0) 327.8 327.8 327.8
4 91.2 (3.6) 104.0 (3.3) 80.9 91.1 84.7
8 43.0 (7.7) 80.0 (4.2) 31.1 65.2 45.5

CRAY-XMP 1 26.4 (1.0) 27.5 (1.0) 26,1 26.1 26,1
4 6.8 (3.9) 21.4 (1,3) 6,1 7.0 6.52

CRAY-YMP 1 22.6 (1.0) 22.8 (1.0) 22.3 22.3 22.3
4 5.9 (3.8) 6.6 (3.5) 5.2 6.0 5.6
8 2.8 (8.0) 4.4 (5.2) 2.0 3.4 2.8

342 R.J. Harrison and R. A. Kendall

Table 3. Parallel ARGOS timings for CaFSi4H 9 with a 101 function generally contracted DZ basis
set. All times reported are in seconds. The parent wall time is the total wall clock execution time for
the job. The parent cpu time is the total cpu time used by the parent process. The two-electron times
report the minimum, maximum and average cpu times spent evaluating two-electron integrals by the
processes. Values in parentheses are ratios to times for a single process

Machine No. of Parent process Two-electron cpu

Processes cpu wall min. max. ave.

Ardent Titan 1 21851.4 (1.0) 22616 (1.0) 21817.2 21817.2 21817.2
4 5813.6 (3.8) 6919.0 (3.3) 5445.2 5839.9 5635.8

Alliant FX/8 1 18594.8 (1.0) 18671.0 (1.0) 18560.0 18560,0 1856.0
4 4969.2 (3.7) 5194.0 (3.6) 4683.5 4999.2 4825.7
8 2715.6 (6.9) 2927.0 (6.4) 2488.1 2692.3 2561.9

CRAY-XMP 1
4 358.2 - 344.5 364.0 351.8

CRAY-YMP 1 1209.6 (1.0) 1950.5 (1.0) 1203.5 1203.5 1203,5
4 306.8 (3.9) 859.2 (2.3) 295.6 839.5 301.6
8 155.9 (7.8) 1253.7 (1.6) 148.0 159.1 151.1

Ardent were run on dedicated machines. The Crays were not dedicated, thus
elapsed times on the Crays are not as meaningful due to variable load from other
users. The parent wall and cpu times are the total times for the parent process,
including all setup, computation of the one-electron integrals, its share of the
two-electron integrals and concatenation of the integral files. The ratio of the
elapsed time to the time for a single process is an accurate measure of the
speed-up from parallelization. For more detailed analysis of the parallelization of
the two-electron integrals we report the minimum, maximum and average cpu
times spent by processes in that section of the code. If the work were perfectly
shared between processes these numbers would be equal.

First consider the non-load balanced timings. The single process cpu times
reflect that ARGOS is dominated by scalar floating point operations. Only the
atomic to symmetry orbital transformation has significant vector content. The
Ardent Titan consistently shows poorer wall time speed-up than the Aliant. This
is due to the relatively slow single drive SCSI file system that was used
(approximately 0.6 Mbytes/s transfer rate). A two way striped SCSI file system
or SMD disks would alleviate this. For all the problems the CRAY-YMP comes
in with a parent process cpu time speed-up of nearly eight on eight processors,
while the Alliant is in the range of six to seven. Since the work distribution is
deterministic in these tests one would naively expect the same cpu speed-up on
all machines. We attribute the variation to system timing differences, variable
load on the Crays (cpu timings can vary by at least 10%), the cache on the
Alliant, and extra system cpu overhead for I/O on the Alliant. As the number of
processes increase so does the amount of I/O that must be done to concatenate
the integral files. This I/O cannot be overlapped with computation and con-
tributes to the poor scaling of the elapsed time. However, for the largest problem

A parallel version of ARGOS 343

we achieve a respectable 6.4 speed-up for the total job elapsed time on eight
processors of an Alliant FX/8. Faster disks and load balancing will improve this.
Deficiencies in the distribution of work show up in the times spent actually
evaluating integrals. In these examples ARGOS computes integrals over symme-
try adapted combinations of atomic basis functions. The nested loops in ARGOS
effectively run over symmetry unique basis functions. Thus a large number of
symmetry equivalent centers would increase the time taken to compute integrals
involving these centers. This has the effect of degrading load balancing with the
simple deterministic algorithm for apportioning the work. As expected, the small
water case and the highly symmetric ethylene molecule show poor load balanc-
ing. On the Alliant we have implemented a dynamic load balancing scheme using
a counter shared between all the processes (this is implemented using a shared
memory region). Instead of each process evaluating every nproc'th set of
integrals, each process merely computes the next set which needs doing. Use of
the shared counter introduces negligible overhead. Times on the Alliant using
load balancing are given in Table 4 for the water and ethylene examples. The
two-electron integral cpu times show a marked improvement.

Conclusions

It is possible to generate efficient portable parallel programs, but one cannot rely
upon vendor provided tools. Shared memory models are not necessarily the way
to use shared memory machines. The integral evaluation program illustrates this
very well. The mechanism used to parallelize ARGOS would be even more
efficient when applied to evaluation of SCF energy gradients, as no I/O is
involved. A down side to distributed memory models is their profligate use of
memory, but all parallel algorithms suffer from this to some extent. The simple
model used here serves to ilustrate the value of distributed memory programming
models. To significantly improve on current performance we need either to
modify the manner in which the integral files are joined or to buy a faster disk
sub-system. The best solution seems to require a server process writing a single
file, communicating with the other processes through shared memory buffers.

Table 4. Parallel ARGOS timings with load balancing for the water and ethylene examples on the
Alliant FX/8. All times reported are in seconds. The parent wall time is the total wall clock execution
time for the job. The parent cpu time is the total cpu time used by the parent process. The
two-electron times report the minimum, maximum and average cpu times spent evaluating two-elec-
tron integrals by the processes. Values in parentheses are ratios to times for a single process

Example No. of Parent process Two-electron cpu

Processes cpu wall rain, max. ave.

water

ethylene

1 87.6 (1.0) 89.0 (1.0) 85.8 85.8 85.8
4 25.8 (3.4) 29.0 (3.1) 22.2 23.0 22.5
8 15.9 (5.5) 22.0 (4.0) 12.0 13.0 12.4

1 332.1 (1,0) 339.0 (1,0) 327.8 327.8 327.8
4 91.5 (3,6) 100.0 (3,4) 84.3 85.2 84,8
8 53.0 (6,3) 64.0 (5.3) 43.4 50.2 46.1

344 R.J. Harrison and R. A. Kendall

Thus the best features o f distributed memory models (modular i ty and data
independence) and shared memory models (fast synchronizat ion and communi-
cat ion th rough shared data) will be exploited simultaneously. We would encour-
age computer vendors to support several portable parallel p rogramming
languages/environments (e.g. L I N D A and S T R A N D) . This helps the pro-
grammer as well as the vendor by providing a wider software base.

The simple tools used here implement a crude form o f message passing using
shared files. We have since developed a much more sophisticated toolset, using
shared m e m o r y and T CP sockets to achieve portabil i ty and performance. These
tools are very similar to the P A R M A C S [10] but substantially more robust.

Increased parallelism is not a substitute for an inefficient algorithm. On a
single processor o f a C R A Y - X M P the U.K. version o f G A M E S S [19] takes just
6.8 cpu seconds to evaluate the integrals (symmetry unique list) for the ethylene
example, rather than the 26.4 seconds used by A R G O S (symmetry adapted list).
Indeed G A M E S S performs the entire integrals and SCF calculation i n 12.4
seconds. However , G A M E S S is not capable o f generating symmetry adapted
integrals, or handling large generally contracted basis sets. This and other
functionali ty means that A R G O S will stay in wide use for a while to come.

Acknowledgements. This work was supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, Division of Chemical Sciences, under contract W-31-109-ENG-38.

Program I. C source for primitive version of PARALLEL and SERIAL

/* Primitive versions of PARALLEL and SERIAL.

Compile with the machine type defined on the cc command line
e.g. cc -c -DSUN parallel.c

Tested on: CRAY (X, Y, 2), ARDENT, SUN, ALLIANT */
include (stdio.h)
include (signal.h)

/* Define routine names for compatibility with FORTRAN linking conventions. */
define SERIALP SERIAl_,
define PARALLELP PARALLEL
if defined(SUN)]1 defined(ALLIANT)
undef SERIALP
undef PARALLELP
define SERIALP serial
define PARALLELP parallel
endif

/* max proc sets a sensible maximum number of forked processes */
define max_proc 7
static int pid_list[max_proc];

/* n_proc_made is the number of processes that are actually forked.
This will be correct only for the parent process */

static int n proc_made = 0;

A parallel version of ARGOS 345

/* Cleanup blindly kills all child processes, and does exit(l). */
static void cleanup()
{

while (n proc_made--)
(void) kill(pid list[n_proc made],SIGKILL);

exit(1);

i

/* Called by the parent serial waits for all child processes to complete. If called by
a child it does exit(O), n_proc made is re-set to 0 for the next call to parallel. */

void SERIALP (nproc, iproc)
int *nproc, *iproc;

{
int pid;

(void) lttush(stdout);
(void) fltush(stderr);

if (*iproc ! = O)
exit(O);

whi le(n proc made) {
--n proc_made;
pid = wait(int*) NULL);
(void) printf("SERIAL: Child finished, pid = %d.\n", pid);

}

* Parallel forks nproc-1 copies and returns iproc with a unique value O- > nproc-1,
the parent process having value O. Upon any error it tries to kill the child processes
and then aborts. */

void PARALLELP (nproc, iproc)
int *nproc, *iproc;

{
int i, pid;

if ((*nproc > (max_proc + 1))II (*nproc< =0)) {
(void) fprintf(stderr, "PARALLEL: nproc = %d, rain = 1, max = %d.\n",

*nproc, max proc + 1);
exit(I);

(void) tttush(stdout);
(void) fitush(stderr);
*iproc=O;

for (i = 1; i < *nproc; i + +) {
if ((pid = fork0) = = - 1) {

(void) fprintf(stderr, "PARALLEL: Error forking process %d.\n", i);
cleanup();

}
else if (pid = = 0) {

*iproc = i; return;

346 R . J . Harrison and R. A. Kendall

}
}

}
else {

(void) printf("PARALLEL: Forked process %d, pid = %d. \n" , i, pid);
(void) fftush(stdout);
pid l i s t [n _ p r o c m a d e + +] = pid;

Program 2. FORTRAN source illustrating use of the parallel and serial subroutine calls

program main
character*40 name
data limit/10/

Demo program for parallel and serial calls.

11

10
C

C

C

write(6, *) 'Input number of processes, 0 to quit'
read (5, *) nproc
if (nproc.eq.0) call exit(0)

Go parallel. All processes then execute code up to call to serial.

call paraUel(nproc,iproc)

Each process opens its own data file, testxxxx

write(name, '("/tmp/test",i4.4)') iproc
open(1,form = 'unformatted',status = 'unknown',file = name)
rewind 1

Share out the work using icount. The mod(icount,nproc)
mechanism allows a nest of loops to be parallelized.

icount = iproc
do 10 i = 1,limit

icount = icount + 1
if (mod(icount,nproc).ne.O) goto 10
write(1)i

continue

Go serial. Explicitly close the children's data file first.

if (iproc.ne.0) close(1,status = 'keep')
call serial(nproc,iproc)

Append other files to the end of the main process's file

do 20 iproc = 1,nproc-1
write(name,'("/tmp/test",i4.4) ')iproc
write(6, *) 'Appending file',name
nval = 0
open(2,form = 'unformatted',status = 'unknown',file = name)

A parallel version of ARGOS 347

20
C

C

C

40
C

30 read(2,end = 35) j
nval =nval + 1
write(1) j
goto 30

30 close(2,status = 'delete')
write(6, *) 'Number of values on the file were',nval

continue

Check the results.

write(6, *)'Checking results'
rewind 1
jsum = 0
isum = 0
do 40i = l,limit

read(l) j
write(6, *) j
isum = isum + j
jsum =jsum + j

continue

write(6, *) 'isum = ',isum,'jsum = ',jsum
close(1,status = 'delete')
goto 11

end

References

1. Saunders VR, Guest MF (1982) Comput Phys Commun 26:389
2. Bair RA, Dunning Jr TH (1984) J Comp Chem 5:44
3. Bauschlicher Jr CW (1987) Theor Chim Acta 71:105
4. a) Clementi E (1985) J Phys Chem 89:4426; b) Corongiu G, Detrich JH (1985) IBM J Res Dev

29(4) :422
5. Bauschlicher Jr CW (1989) Theor Chim Acta 76:187
6. Guest MF, Harrison RJ, Lenthe JH van, Corler LCH van (1987) Theor Chim Acta 71:117
7. a) Clementi EC, Corongiu G, Detrich JH, Khanmohammadbaigi H, Chin S, Laarksonen A,

Nguyen HL, IBM Technical Report, KGN-2, May 20, 1984; b) Watts JE, Dupuis M, Villar, HO,
IBM Technical Report, KGN-78, August 29, 1989; c) Dupuis M, Watts JD (1987) Theor Chim
Acta 71:91

8. Fox GC, Otto SW (1984) Physics Today 37.5:50
9. Pitzer R (1973) J Chem Phys 58:3111

10. Boyle J, Butler R, Disz T, Glickfeld B, Lusk E, Overbeek R, Patterson J, Stevens R (1987)
Portable Programs for Parallel Processors, Hold, Rinehart and Winston Inc

11. Seitz CL (1985) Caltech report; Communications of the ACM 28 (1985) 22
12. Carriero N, Gelertner D (1985) ACM Transactions on Computer Systems 3:77
13. Andrews G, Olsson R (1988) TOPLAS (ACM Transactions on Programming Languages and

Systems) 10.1:51
14. Foster I, Taylor S (1990) Strand, New Concepts in Parallel Programming, Prentice Hall, New

Jersey
15. Watts JD, Dupuis M (1988) J Comp Chem 9:158
16. Handy NC (1980) Chem Phys Lett 74:280
17. Krishnan R, Binkley S, Seeger R, Pople J (1980) J Chem Phys 71:650
18. Dunning TH, private communication of unpublished work
19. Guest MF (1989) GAMESS, Users's guide and reference manual. Science and Engineering

Research Council, Daresbury Laboratory

